452 research outputs found

    Uncertainty from Heisenberg to Today

    Full text link
    We explore the different meanings of "quantum uncertainty" contained in Heisenberg's seminal paper from 1927, and also some of the precise definitions that were explored later. We recount the controversy about "Anschaulichkeit", visualizability of the theory, which Heisenberg claims to resolve. Moreover, we consider Heisenberg's programme of operational analysis of concepts, in which he sees himself as following Einstein. Heisenberg's work is marked by the tensions between semiclassical arguments and the emerging modern quantum theory, between intuition and rigour, and between shaky arguments and overarching claims. Nevertheless, the main message can be taken into the new quantum theory, and can be brought into the form of general theorems. They come in two kinds, not distinguished by Heisenberg. These are, on one hand, constraints on preparations, like the usual textbook uncertainty relation, and, on the other, constraints on joint measurability, including trade-offs between accuracy and disturbance.Comment: 36 pages, 1 figur

    Heisenberg uncertainty for qubit measurements

    Get PDF
    Reports on experiments recently performed in Vienna [Erhard et al, Nature Phys. 8, 185 (2012)] and Toronto [Rozema et al, Phys. Rev. Lett. 109, 100404 (2012)] include claims of a violation of Heisenberg's error-disturbance relation. In contrast, we have presented and proven a Heisenberg-type relation for joint measurements of position and momentum [Phys. Rev. Lett. 111, 160405 (2013)]. To resolve the apparent conflict, we formulate here a new general trade-off relation for errors in qubit measurements, using the same concepts as we did in the position-momentum case. We show that the combined errors in an approximate joint measurement of a pair of +/-1 valued observables A,B are tightly bounded from below by a quantity that measures the degree of incompatibility of A and B. The claim of a violation of Heisenberg is shown to fail as it is based on unsuitable measures of error and disturbance. Finally we show how the experiments mentioned may directly be used to test our error inequality.Comment: Version 3 contains further clarifications in our argument refuting the alleged violation of Heisenberg's error-disturbance relation. Some new material added on the connection between preparation uncertainty and approximation error relation

    A Continuity Theorem for Stinespring's Dilation

    Get PDF
    We show a continuity theorem for Stinespring's dilation: two completely positive maps between arbitrary C*-algebras are close in cb-norm iff we can find corresponding dilations that are close in operator norm. The proof establishes the equivalence of the cb-norm distance and the Bures distance for completely positive maps. We briefly discuss applications to quantum information theory.Comment: 18 pages, no figure

    Uncertainty Relations for Angular Momentum

    Get PDF
    In this work we study various notions of uncertainty for angular momentum in the spin-s representation of SU(2). We characterize the "uncertainty regions'' given by all vectors, whose components are specified by the variances of the three angular momentum components. A basic feature of this set is a lower bound for the sum of the three variances. We give a method for obtaining optimal lower bounds for uncertainty regions for general operator triples, and evaluate these for small s. Further lower bounds are derived by generalizing the technique by which Robertson obtained his state-dependent lower bound. These are optimal for large s, since they are saturated by states taken from the Holstein-Primakoff approximation. We show that, for all s, all variances are consistent with the so-called vector model, i.e., they can also be realized by a classical probability measure on a sphere of radius sqrt(s(s+1)). Entropic uncertainty relations can be discussed similarly, but are minimized by different states than those minimizing the variances for small s. For large s the Maassen-Uffink bound becomes sharp and we explicitly describe the extremalizing states. Measurement uncertainty, as recently discussed by Busch, Lahti and Werner for position and momentum, is introduced and a generalized observable (POVM) which minimizes the worst case measurement uncertainty of all angular momentum components is explicitly determined, along with the minimal uncertainty. The output vectors for the optimal measurement all have the same length r(s), where r(s)/s goes to 1 as s tends to infinity.Comment: 30 pages, 22 figures, 1 cut-out paper model, video abstract available on https://youtu.be/h01pHekcwF
    • …
    corecore